Course Number: RH3800
Course Title: SIMulation Workbench™
Course Duration: 3 Days

Purpose:
SIMulation Workbench provides a complete framework to develop and execute real-time hardware-in-the-loop and man-in-the-loop simulations from C/C++/Fortran/MATLAB/Simulink models. This course guides the student through the process to configure, start, stop, record and play back simulation runs; build and execute photo-realistic HMIs. Concurrent iHawk multiprocessing systems running SIMulation Workbench are based on COTS components offering the latest, leading-edge processor, chipset, memory and I/O bus technology. Students will learn how to take advantage of these features to target individual I/O processes and multi-rate models to specific CPU cores and I/O buses for parallel execution, thus allowing the simulation loop to run at faster frame rates.

Intended Audience:
This course is intended for application engineers running simulation models in realtime on Concurrent systems using the RedHawk™ Linux® real-time operating system.

Course Objectives:
Upon successful completion of this course students are able to:

• Describe the SIMulation Workbench system architecture to include the real-time host, logging facilities, and clients in a monolithic or distributed environment.
• Explain the cycles of the SIMulation Workbench scheduler frame, their related components and function of each, and the various mechanisms available to configure the SIMulation Workbench scheduler.
• Describe the three main components of the Real-Time DataBase, the purpose and functionality of the current and alternative values table.
• Describe the synchronous and asynchronous I/O tasks including the functionality and capabilities of each class.
• Using the SIMulation Workbench MLToolkit and Control Center GUI, configure, build and run Simulink created models in realtime.
• Describe SIMulation Workbench I/O device configuration, as well as the creation of analog, digital, and string points.
• Describe, configure, and use the Data Log Viewer to visualize SIMulation Workbench RTDB values.
• Using the SI Mulation Workbench HMI Display Builder and HMI Run-time, create and run basic GUls.
• Write, build, and run scripts for running during the simulation test cycle.
• Describe how simulation tests combine scripts, models, an RTDB, initial conditions and into a full simulation test session.
• Describe, configure, and use the Real-Time Viewer to monitor running tests.
• Explain the mechanism to use Real-Time Forms to export and import sets of variables with running tests.

Prerequisites:
• C/C++ Programming Language – understand C/C++ language source code and syntactical constructs.
• Linux System Capability – prior experience with basic Linux system commands and utilities used to create programs.

Course Topic Outline:
I. Real-time Overview
 A. Hard, Firm, and Soft attributes
 B. RedHawk Linux Real-time Support
 C. Hardware-In-the-Loop
 1. Multi-core
 2. Parallel and I/O Independence

II. SIMulation Workbench Installation
 A. Prerequisites
 1. Hardware
 2. Network
 3. Software
 B. Server and Client Installation
 C. Simulink MLToolkit

III. SIMulation Workbench Architecture
 A. Scheduler Frame Cycles
 B. Models, RTDB, I/O Tasks and Scripts
 C. Synchronous vs Asynchronous I/O
 D. RTDB CVT and Alternate Values
 E. Scheduling Tests
 1. FBS/RCIM mechanisms
 2. OS Timers
 F. Data Logging

IV. SIMulation Workbench Control Center
A. User Controls & Authentication
B. RTDB & I/O Configuration
 1. Analog, Digital, and String Points
 2. Engineering Units Conversion
 3. I/O Devices, Tasks, and Mappings
C. Programming
 1. Simulink Models and ML Toolkit
 2. Scripts and User Programs
 3. Client, Real-time, and Script APIs
 4. Environment Variables
D. Tests, Sessions, Suites, and Initial Conditions
E. Data Log Viewer
F. RT Viewer and Forms
G. HMI Display Builder and Run-time

Laboratory Exercises:
Students are provided with the opportunity to perform hands-on exercises for topics presented to include the following:

- Review exercises are fill-in type questions that require the student to review the material presented and respond. These questions reinforce the important points presented in each topic.
- Hands-on exercises provide the student with experience in using the Control Center, commands, utilities, APIs, and techniques from the material presented. This allows students to better understand what they have learned.
- Students will be provided example source code in order to run, modify, and explore various concepts to reinforce topics presented.