Features

* ANSI/ISO/IEC-8652:1995 compliant compiler

* Ada Real-Time Multiprocessing System (ARMS™)
- Multiprocessor Ada tasking
- Predictable task execution and communication
- Hardware interrupt handling

* Supports team programming
- Allows parallel development in multiple
environments
- Provides protection for baseline environments

* Fully integrated with Concurrent’s NightStar™
software development tool set
- NightView™ symbolic debugger
- NightTrace™ analyzer
- NightProbe™ data monitor
- NightSim™ periodic scheduler

* Real-time tracing
* Real-time data monitoring

» Common software environment for all Concurrent
platforms

* Aggressive code optimization
* Automatic and on-demand syntax checking

* Create, configure, and build shared libraries
and archives in addition to executable programs

* Automatic build facility assures consistent
program generation with persistent compile and
link options

* Provides Ada packages and bindings, including:
- POSIX.1 (IEEE-Std-1003.1)
- POSIX.1b (IEEE-Std-1003.1b)
- POSIX.5 (IEEE-Std-1003.5-1992)
- AXI™ bindings to MOTIF™/Xt/Xlib (optional)

* Extensive graphical online help
- MAXAda Reference Manual
- NightBench User's Guide
- Ada 95 Reference Manual

* Optional Understand for Ada Tools:
- Reverse engineering
- Automated documentation
- Code navigation
- Cross referencing

=
ONCURRENT

COMPUTER _
ORATION"

VWhere
Real-Time

Overview

Concurrent Computer Corporation’s
MAXAda™ is a high-performance
system intended for the large-scale
development of real-time Ada
applications. MAXAda processes the
Ada language as specified by the Ada
95 Reference Manual, ANSI/ISO/IEC-
8652:1995.

MAXAda is available on Concurrent
iHawk™ Xeon™-based multiprocessors
running RedHawk™ Linux® as well as
its PowerPC-based platforms running
PowerMAX™ QOS.

Concurrent is committed to a long-
range strategy of creating tools
necessary for generating production-
quality Ada software. To this end,
Concurrent has produced a
sophisticated optimizing technology
that meets the high-performance,
real-time needs of today’s
deterministic Ada applications. In
addition to a self-targeted compiler,
MAXAda includes the advanced ARMS
run-time system, the NightBench
program development environment,
and comprehensive real-time tools.

The MAXAda Compiler
The MAXAda compiler maximizes
run-time efficiency, featuring multiple
levels of optimized code generation.

Integrated Solutions. ..

The compiler incorporates state-of-
the-art optimizations such as
constraint propagation as well as other
standard optimizations, such as
constant folding, common sub-
expression elimination, moving
invariant code, reduction of operator
strength, and peephole optimizations.
The compiler utilizes table-driven code
selection and register allocator
algorithms, thereby providing rapid
retargetability. MAXAda’s efficient
instruction scheduling is a key
feature in compilation for state-of-the-
art computer architectures.

Comprehensive programming
support includes:

- extensive support of representation
items, including enumeration and
record representation clauses

- concentrated records and array
packing

- virtual and physical address
clauses

- interfacing to other languages

- multiple shared memory
paradigms

- software and hardware interrupt
handling

- user-level device drivers

Real Benefits

ARMS Run-Time
System

MAXAda includes the Ada Real-Time
Multiprocessing System (ARMS), an Ada
run-time executive designed for critical
real-time tasking applications. ARMS
implements all tasks as individual threads
of execution that can be independently
scheduled by the OS kernel, thereby
providing true concurrence in a real-time
multiprocessor/parallel execution
environment.

For greater real-time control, ARMS
provides a number of pragmas for
configuration of the whole run-time system,
including task execution and memory
utilization. Explicit control of CPU
assignment, task prioritization, and task
time slice duration are examples of these
pragmas.

MAXAda provides fast exception handling
with comprehensive descriptions of
exceptions, with specific references to the
Ada 95 Reference Manual. In addition,
MAXAda provides exception tracing, which
describes the path of exception handling
from point of raise to point of handling,
giving the user a unique debugging
advantage.

Furthermore, hardware interrupts
attached to Ada-protected objects and tasks
provide ultrafast interrupt response times.

NightBench Program
Development Environment

NightBench is a graphical user interface
that provides a common work environment
for the tools necessary for Ada program
development.

NightBench supplies these features in a
unified graphical user interface based on
OSF/Motif™ and the X Window System™
standards, providing the user with a work
environment in which to develop Ada
programs quickly and easily.

NightBench organizes
program development,

keeping track of all 1 oo
relevant information e T o o o e

5_su c
s manitor status_support local_ormat body package complled C 05/14/95 10:08:35
5 manitor status_suppo wp_support body package complled C 05/14/98 100852
adats monitor status_support system_support body package compiled C 05/14/38 100811
ada.rts.monitorstatus_support.system_support)b body subprogram compiled Inc? 05/14/38 09:50:34

spec package complled C7 05/14/99 094612 |-

ists,get_group_number(l.group). 3) :
£, Fill_with_group_name
ort.get_group_name (1,group?) :

ok 1= proc_interface. lup_Lookup (pid.
Tupie rem 2xx16.
tor”

Edit source files within
the environment using
integrated text editor

Organized Program
Development

MAXAda organizes Ada program
development by keeping track of
information related to each environment.
This information ranges from the source
files and their corresponding compilation
units to the programs that are defined
within these environments. MAXAda
handles the intricate details that are crucial
to consistent program generation.
Dependencies between units, their
compilation states, and level of consistency
with respect to the project are all
maintained by MAXAda.

Automatic Build Utility
MAXAda provides a highly sophisticated
build facility, which executes the required

Extensive online help
including hyperlinks to the
Ada 95 Reference Manual

and MAXAda Reference

Manual from error messages

generated during the build

ada.ts monitor status_support task_support

8.3 Visibility

1 The visibeliry rufes, ghven below, determine which declarations are vistble and directly
vistble at each place within a program. The visibility rules apply to both explicit and.
implicit declarations

Statio Semaneic:

aration s defined to be diveceiy visidée at places where aname consisting of
identifier or operator_symbol s sufficient to denote the de clararion; that is, no
£d_componentnotation or special context (such as preceding => in anamed
ation) is necessary to denote the declararion. 4 declaration s defined to be.
wherever it is directly visible, as well as at other places where some name
as aselected_component) can denote the declaration.

mtactic category dlirect_name is used to indicate contexts where direct visibiity
Juired. The syntactic category selecior_name is used to indicate contexts where
ty, but not direct visibiliry, is required.

aretwo kinds of direct visibility: imediace visibidity and wse—visibility. &

arion is immediarely visible ata place ifiis directy visible because the place is

irs immediate scope. 4 declaration is use - visible ifitis directly visible because
len Ao isn /oa @ AL Bath o firine o el

sequence of compilations and links to build
executable programs, shared objects, or
archives, importing required units from
outside environments, if necessary.
Compile options, link options, and other
preferences are persistent, providing
consistency across compilations and builds.
This architecture assures reproducibility
of programs within a given build
environment.

Protected Environments
Programmers can work without
interference on local versions of individual
program units while retrieving the
remainder of the program from previously
developed environments using MAXAda's
Environment Search Path. In this way,
baseline environments remain protected,

ada.rts manitor status_support system_support v body subprogram compiled Inc? 05/14/38 09:5042
body package uncompiled C 0514798 10:06:30

Persistent build options
provide consistency

- across compilations

e T i T

= Night/iew Principal Debug Window N =

Messages:

/jas2/h

moni tor-

Libs_bb_phase3_0228/EXEL/ppoB04/a, naniton/a,mani tar, ., done. E

Option Default Value

=
local:2514

Debug Information none (0) full(z) —

Optimization Level minimal (1) — |

Sharing Mode

minimal (1]

non-shared

.
.
.
.
: Suppress Runtime Checks m] -
.
.
.
.

non-shared — |

errors only

Quiet Compiler Info Msgs, [~
Quiet Compiler Warnings O =

Compiler Error Qutput errors only |

Clear Cancel Help

Stopped for exec
3

Monitor, manipulate, and
debug programs using
NightView Source-level

Debugger

Build programs, shared
libraries, and archives with the

Resue] Step | Next Stepi | Nexti Finish Son
Print Breakpoint Run To Here Clear
Guallfer: Command; Interrupt

local:z514 If

press of a button

jﬂ‘ Builder J‘J

Environment | fjasz/build_boyrlibs_bb_phase3_0228/EXEC/ppcED4/amonitor |

Build | Targets | Settings |uotiﬁcation| Expert |

4

Targets ‘ partition amonitor

Start Build | Verify Build | Ston

Progra [lamoritor /]

= o
Sulteh To
Stopped
Process

A |

Group of Processes for this Window

|
y |

¢ Fun| Detaeleq

Transcript

Run Program

@ Errors and Alerts (ahways shown) W Warnings W Info Messages

package spec ada.ris.monitor.status_support .
status_support.pp .
IR R RRR

[
Awarnings R3S Hr undefined pragna

package subunit ada,ris.monitor.status_support.task_support
status_tasks.pp

|| Edit Selected | Edit Previous | o et Show R Reference

while multiple development efforts may
occur simultaneously without conflict.

Error Processing

Innovative error-recovery techniques
minimize cascading errors while maximizing
the effectiveness of error-processing by
referencing the related paragraph of the Ada
95 Reference Manual for each actual error.
In addition, MAXAda can be configured to
embed error messages in the source file
where they occur and to open the
corresponding source file in the user's
editor when the build completes.

NightBench simplifies error processing,
allowing users to select errors from a list
generated during the build. Selecting an
error from this list opens the supplied
editor to the appropriate position within the

Run programs directly
from NightBench

corresponding source file. For additional
references and analysis, hyperlinks are
provided to the related sections of the
online versions of the MAXAda and Ada 95
reference manuals.

NightView Debugger

MAXAda uses the NightView debugger
for source-level monitoring and debugging.
This graphical debugger is specifically
designed for real-time applications, allowing

multiple programs executing across
multiple processors or single-board
computers to be simultaneously monitored,
manipulated, and debugged.

In addition to providing access to Ada
source code during a debugging session,
NightView allows the user to control the
execution of a MAXAda program using

standard breakpoint and stepping
capabilities. Additional real-time debugging
mechanisms provided by NightView include
monitorpoints, tracepoints, patchpoints,
and watchpoints.

Real-Time Tracing

MAXAda includes support for real-time
debug and performance analysis via
real-time trace points. MAXAda provides an
Ada executive that has been instrumented
with trace points describing task scheduling
activities. The operating system has also
been instrumented with trace points that
describe activities such as system calls,
exceptions and interrupts. Users may add
additional tracepoints through MAXAda-
supplied bindings or with NightView.

MAXAda also includes a trace tool, which
provides raw and symbolic (ASCII) analysis
of the trace data.

An optional product, NightTrace is
available to provide graphical analysis of the
trace data as well as user trace daemons
and operating system support.

Real-Time Monitoring
MAXAda includes a symbolic real-time
data monitoring utility that allows users to

view and modify data from multiple
programs running concurrently, in real-time.

In addition, a task monitoring tool can
monitor an Ada program in real-time by
displaying system utilization and the
activities of selected Ada tasking threads of
execution, allowing users to cyclically
monitor task and system information.

Both monitoring tools operate non-
intrusively and are stand-alone utilities.

Real-Time Bindings

MAXAda supplies a number of bindings to
real-time services, extending the capabilities
of the Ada language. These real-time
features provide an interface to operating
system utilities, which include Concurrent’s
Frequency-Based Scheduler, a cyclic
scheduler, high-resolution timing interfaces,
and mutual exclusion interfaces. In addition

to the task synchronization features defined by
the language, MAXAda supplies additional

MAXAda™ Environment

mechanisms that provide extremely efficient = nterm AE
SynChl’OﬂIZ&thﬂ Of tWO or more tasks Pask> <Bys> Mem> <Lwp> <Refrsh> fi:é)gé\égg?nse) {Ghosts> <Addr> {+>{-> <Ouit?

Support also includes low-level interfaces for

. . {ffii‘ %EE toh_addr taszk_name task_status

rescheduling, preemption control and 117 Bo0deod0 DEFAULT Coouriers | executing

. . . . ae zignal_handler<zhadowt=sigintr®> interrupts
c!lent-server services, as well as bindings to * 3 1 h0Mdaid0 BECUEINE e ‘
direct memory access. 0 1 hodaddst o e selaet (Ealitng B eumers

delay wakeup in 73,195082s
Ada Bindings to POSIX 15 5 Eggggﬁ 2 . el ¥ B
a signal_handler . ac:ept_at entry: sigintr
A complete implementation of IEEE-Std-1003. S booreces mamdlcenriennY popstands
L. K 5 bO0lalkd <t.1.m_er> timer _set wakeup in 73,190512=
5-1992 (POSIX.5) is included with MAXAda. T o0eTans comtorment> Seeiting
POSIX.5 is a high-level abstract binding to interrupt_id received deliversd pending
IEEE-Std-1003.1, which provides complete access ||z 5 gD 5
to items covered by the associated C standard lupid gre group_nans server_status
bindings. Thin direct bindings to IEEE-Std-1003.1 || § imifee servine o
prederine 1 =]

(POSIX.1) and IEEE-Std-1003.1b (POSIX.1b) are |

also supplied with MAXada.

Ada Bindings to X/Motif™

MAXAda supports the Ada X Interface (AXI) bindings to Xlib, Xt, and Motif. These bindings grant
MAXAda programmers full use of over 500 functions and procedures in the X Window System network
display services and the Motif graphical user interface standard.

Using AXI, MAXAda users can utilize X and Motif while taking advantage of Ada’s modularity and
language features (such as generics, tasking, and exceptions) when writing GUI applications. AXI is
available as a separate product from Concurrent.

Extensive Online Help
MAXAda provides a graphical, topic-based help system that contains both the MAXAda Reference

Manual and NightBench User’s Guide in their entirety, as well as the complete Ada 95 Reference Manual.

These online manuals reference each other through hyperlinks, providing the user with all relevant
information about a particular topic. In addition, system main pages that are referenced in the online
help system can be displayed under the same graphical interface.

Tutorials provide specific examples on using MAXAda and the NightBench Program Development
Environment. Context-sensitive help is also provided for more specific information.

Understand for Ada

Understand for Ada is an optional interactive development environment that provides for reverse
engineering, automatic documentation, code navigation and comprehension, metrics, maintenance and
cross referencing for Ada83 and Ada95 source code. It is designed to assist engineers who have
inherited large amounts of Ada legacy code or whose Ada projects have grown to immense size or
complexity.

Worldwide Support and Service
Concurrent offers a wide range of service and support programs for its products, as well as for
hardware from other vendors. Concurrent’s Professional Services group provides custom hardware
engineering, software development, and third-party integration services.

MAXAda provides a
task monitoring tool
that displays system
utilization of an Ada
program in real-time,
allowing users to
cyclically monitor task
and system information.

Information subject to change without notice. Concurrent Computer Corporation and its design are registered trademarks and MAXAda, NightBench,

NightStar, NightView, NightTrace and ARMS are trademarks of Concurrent Computer Corporation.

0SF/Motif and X Window System are trademarks of Open Software Foundation. UNIX is a registered trademark licensed through X/Open Company.

All other trademarks are the property of their respective owners. © 2003 Concurrent Computer Corporation RTlit 0010-0803 02000

